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Summary. Some systematic errors of the zero differential overlap (ZDO) approxi- 
mation in semiempirical molecular orbital (MO) methods are discussed. In rc elec- 
tron methods, a power series expansion of the inverse square root S-1/2 of the 
overlap matrix and application of the Mulliken approximation to the two-electron 
integrals show that the ZDO Hamiltonian coincides with the Hamiltonian ob- 
tained by explicit performance of the L6wdin transformation up to first-order 
terms of diatomic overlap densities. Higher than first-order terms lead to a system- 
atic up-shift of the canonical MO energies. Although a power series expansion of 
S -  1/2 is no longer possible in all-valence-electron methods, the MO levels resulting 
from the ZDO approximation are also systematically placed at too low energies, 
especially the low-lying occupied and the virtual MOs. A method based on explicit 
performance of the L6wdin transformation and retaining the simplicity of the ZDO 
approach for the calculation of Fock matrix elements is developed. The parameters 
of this method are obtained by very simple manipulations of the original ZDO 
parameters. Numerical calculations show that a considerable improvement of the 
MO energy spectrum in the inner valence region can be obtained in this way 

Key words: Zero differential overlap - Semiempirical MO methods - L/Swdin 
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1 Introduction 

Some of the most common semiempirical molecular orbital (MO) methods like 
CNDO (complete neglect of differential overlap) [1], INDO (intermediate neglect 
of differential overlap) [1], MINDO/1-3 (modified intermediate neglect of differen- 
tial overlap) [-2] as well as MNDO (modified neglect of differential overlap) I-3] and 
AM1 (Austin Model 1) [4] use the zero differential overlap (ZDO) approximation, 
i.e., overlap densities q~* ~b~ with ~bu and ~b~ being orbitals localized on different 
atoms are neglected whenever they appear in an integral or matrix element except 
for the so-called resonance integral flu~ which is indispensable for the description of 
chemical bonding. In contrast to these approaches, the most simple semiempirical 
all-valence-electron MO formalism, the extended Hiickel method [5], operates 
with a full-overlap basis. A full-overlap semiempirical Hartree-Fock (HF) method 
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based on the two-electron integrals used in CNDO has been developed by 
Yonezawa et al. [6]. Another interesting approach is the Hartree-Fock n electron 
model of Berthier et al. [7] in which the L6wdin transformation from the non- 
orthogonal atomic orbital (AO) to a symmetrically orthogonalized basis [8] is 
performed explicitly and the ZDO approximation for the two-electron integrals is 
only used after the transformation. Several semiempirical methods employing 
orthogonality correction terms in the diagonal elements of the Fock matrix have 
also been reported [9-12]. 

The validity of the ZDO approximation gave rise to some discussion in the 
sixties and seventies [13-22]. Most of these analyses start from the assumption that 
the basis used in ZDO methods consists of symmetrically orthogonalized L/Swdin 
orbitals [8] rather than the nonorthogonal AOs and rely heavily on a power series 
expansion of the inverse square root S -1/2 of the overlap matrix S. This leads to 
a justification of the ZDO method in n electron theories as has been shown by 
Fischer-Hjalmars [13]. However, second-order overlap terms missing in the ZDO 
scheme seriously affect the resonance integrals flla between nonnearest neighbors 
in n systems as has been discussed by de Bruijn [14]. He also showed that there is 
a decrease of the nearest-neighbor resonance integral in small atomic clusters 
which cannot be consistently parametrized in a ZDO scheme [14]. The analysis of 
Fischer-Hjalmars has been extended by Brown and Roby [15] to all-valence- 
electron methods of the CNDO, INDO and NDDO (neglect of diatomic differen- 
tial overlap) [23] type. However, it has been pointed out by Gray and Stone [16] 
that even for such simple molecules as e.g. methane some elements of the overlap 
matrix can get quite large (> 0.5) leading to eigenvalues of the overlap matrix 
bigger than 2 so that a power series expansion of S-  1/2 no longer converges. In that 
case the conclusions based on such an expansion break down. Thus, the arguments 
of Brown and Roby [15] have been reexamined by Chandler and Grader [17] 
using a different S expansion technique. In agreement with Brown and Roby, they 
arrived at the conclusion that the one-electron Hamiltonian matrix elements of the 
ZDO method cannot be identified with those obtained after explicit performance of 
the L6wdin transformation but that there is some justification for neglecting 
diatomic differential overlap in the two-electron repulsion integrals if the latter are 
calculated in the L6wdin basis. Roby [18] attempted to justify the ZDO approxi- 
mation without having recourse to a power series expansion of S-1/2. His argu- 
ments have been criticized by King et al. [19]. 

The evaluation of the two-electron integrals poses the most serious problems in 
the design of an appropriate NDO method based on explicit performance of the 
L/Swdin transformation. Actually, the difficulty in handling the two-electron part of 
the Fock matrix in a full-overlap basis is probably the most compelling reason for 
the widespread use of the ZDO approximation in semiempirical SCF MO ap- 
proaches. On the other hand, the simpler extended Hiickel method [5] does not 
encounter this problem and can therefore be easily formulated in a full-overlap 
basis. Since the two-electron part of the Fock matrix is much better approximated 
by the usual NDO expression than the one-electron part [15] it might be tempting 
to calculate the latter explicitly in a L/iwdin basis and to treat the former like in 
traditional NDO theories. However, this leads to an imbalance between rather 
large electron--core attraction and electron-electron repulsion terms [20]. Thus, 
the two-electron part of the Fock matrix should be dealt with in the same way as 
the one-electron part, i.e., both should be subjected to the L6wdin transformation 
simultaneously. However, not much is gained by such a procedure. Even if the 
NDO approximation, i.e., the neglect of two-electron integrals containing diatomic 
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differential overlap, is justified to some extent in the L6wdin basis [15, 17] the 
whole set of two-electron integrals in the AO basis has to be evaluated before the 
L6wdin transformation can be performed. Note that in an AO basis there is no 
justification for neglecting diatomic differential overlap terms within the multitude 
of two-electron repulsion integrals, the number of which increases roughly as  N 4 if 
N is the dimension of the AO basis. To avoid evaluation of such an abundant 
number of integrals one often uses the Mulliken [24] (in the case of CNDO) or 
Ruedenberg [25] (NDDO) approximations for replacement of diatomic differential 
overlap terms by mono-center terms in the AO basis. Recently, Koch [26] sugges- 
ted to explicitly perform the transformation only for two-electron integrals con- 
taining orbitals on atoms located within a certain radius and to identify the 
remaining integrals to those of the AO basis. Sometimes, the two-electron integrals 
in the L6wdin basis are related to those of the AO basis in a crude fashion by using 
scaling factors [27]. Extensive efforts to circumvent the N 4 problem without 
serious loss in accuracy have been performed in the PRDDO (partial retention 
of diatomic differential overlap) [28] and AAMOM (an approximate molecular 
orbital theory) [29] approaches. An intuitively appealing strategy based on 
explicit performance of the L6wdin transformation but retaining both the 
above-mentioned balance between electron-core attraction and electron-electron 
repulsion terms and the simplicity of NDO methods in the treatment of 
two-electron integrals has been outlined by Spanget-Larsen [20a]. This 
elegant setup has been used in calculations of conjugated hydrocarbons 
[20b-e]. 

The most serious deficiency inherent in the ZDO methods mentioned at the 
beginning (CNDO, INDO, etc.) is that they must pretend to operate with a L6wdin 
basis but parametrize all matrix elements and two-electron integrals as if an AO 
basis were used. Hence, they do not take into account the fact that a L6wdin orbital 
associated with a certain atom also depends on the surroundings of that atom. 
Thus, there is no guarantee that matrix elements calculated in the L6wdin basis are 
transferable from one molecule to another [13, 14]. In the present contribution we 
will make some efforts to overcome this inconsistency. We will focus on the 
transformation of given ZDO parameters to an AO basis which are subsequently 
subjected to the L6wdin transformation. Although a careful reparametrization of 
existing ZDO methods might be unavoidable if one wants to benefit quantitatively 
from such an improved formalism we will show that a rather simple modification of 
ZDO parameters leads already to quite reasonable results and eliminates some 
systematic errors inherent in the ZDO approximation. For example, the most 
bonding and antibonding MOs are consistently found at too low energies in ZDO 
methods which give reasonable MO energies only for the frontier orbitals near 
the HOMO-LUMO region. Our objective is to retain the simplicity of existing 
ZDO formalisms and to base them on explicit performance of the L6wdin trans- 
formation. 

As already mentioned most of the theoretical contributions to our understand- 
ing of semiempirical MO methods have been published in the sixties and seventies 
while recent approaches are quite sparse. This change in scientific emphasis has its 
technical origin in the increasing availability of high-speed computers allowing 
high-quality ab initio calculations also on larger molecules. The necessity to study 
electronic structure properties of molecules by approximate MO techniques there- 
fore had been reduced in the past years. Nevertheless, there exist challenging 
problems where efficient non-ab initio electronic structure approaches are prerequi- 
sites for theoretical investigations. Ab initio Hartree-Fock methods which have 
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their roots in the techniques of quantum chemistry cannot be employed in invest- 
igations of solid-state electronic structures of complex materials. For these systems 
one can choose only between band-structure methods based on the local density 
functional (LDF) approximation [30, 31] and crystal orbital formalisms based on 
approximate ZDO Hamiltonians. But as documented in the literature [32-34] the 
latter lead to inner valence bands which are much too broad. LDF methods also 
have intrinsic shortcomings in the reproduction of experimental properties. Band 
gaps are predicted to be too small. By adopting the improvements discussed below 
previous ZDO deficiencies can be eliminated. Furthermore, we expect that im- 
proved LCAO (linear combination of atomic orbitals) models should be of some 
utility in combination with quantum Monte Carlo (QMC) simulation methods. 
Most of the previous QMC work had been restricted to simple model Hamil- 
tonians of the Hubbard or extended Hubbard type [35,36]. A previous PPP 
(Pariser-Parr-Pople) [37] extension can also be found in the literature [38, 39]. In 
combination with Green's function QMC techniques, improved model Hamil- 
tonians avoiding certain ZDO errors should be very useful. Apart from this 
motivation, the present theoretical analysis has a didactic aim, too, i.e., to clarify 
problems of the ZDO approach in as transparent a manner as possible. 

In Sect. 2 we examine the relationship of ZDO parameters with the correspond- 
ing parameters in an AO basis. This section has to some extent the character of 
a review but also covers new aspects. Section 3 will be devoted to numerical 
calculations which illustrate some of the theoretical arguments. A theoretical 
resume and suggestions for future work are presented in Sect. 4. 

2 Deficiencies of ZDO approximations 

Self-consistent-field (SCF) MO calculations in a full-overlap, i.e., the AO basis 
{gb,} are based on an iterative solution of the following secular equation: 

F C  = S & ,  (1) 

where S is the overlap matrix, C the matrix of the eigenvector coefficients, ~ a diag- 
onal matrix containing the canonical MO energies, and F the Fock matrix which 
can be divided into a one-electron part h and a two-electron part G: 

F = h + G. (2) 

For closed shell systems, the matrix elements of h and G read 

h . v  = ( ¢ . l f z L 4 ~ v ) ,  

G,v = ~ ~ P2.¢((¢,¢~lqS~b;.) - ½(¢uCxl ¢~q5~)), (3) 

with the bond order matrix P having the following matrix elements: 

Pz,  = 2 Z CziC*,. (4) 
i(occ. MOs) 

The two-electron integrals are abbreviated as follows: 

1" . • e 2 = ¢.(1)¢~(2)--¢~(1)¢~(2)dvl dr2, (5) 
J r12 
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where r12 is the distance between electrons 1 and 2. The electron charge is 
symbolized by e. Since we are dealing with real orbitals the asterisks indicating the 
complex conjugate in Eq. (5) can be omitted in the following, h is the core 
Hamiltonian which can be partitioned into the kinetic energy and the potential 
energy in the electrostatic field of all the atom cores; each core consists of the bare 
nucleus and those electrons which are not being explicitly considered, i.e., the inner 
shell electrons in the case of all-valence-electron methods. Denoting the cores by 
the capital letter A we obtain 

/~ = - ½A + ~ VA. (6) 
a 

In contrast to full-overlap methods the ZDO approaches use the following 
secular equation: 

ZDOFZDOc = ZDOcs. (7) 

It has been shown by L6wdin [8] that Eq. (1) can be brought to the form of Eq. (7) 
by the following transformation: 

2F = S -  1/2FS- 1/2, 

resulting in 

)'C = $1/2C, (8) 

~F~'C = )'C~. (9) 

It should be noted that the L6wdin basis represents just one particular choice out 
of an infinite multitude of possible orthogonal basis sets. Necessary condition for 
the transformation is only the conservation of the functional space spanned by the 
genuine AOs. However, the LSwdin orbitals have some special properties respon- 
sible for their importance in quantum chemistry. First, they resemble the initial 
AOs as closely as possible and, second, they have the same transformation proper- 
ties as the AOs under symmetry operations of the molecular point group I-8]. 

It is clear that the utility of ZDO methods depends on the fact that observable 
quantities like charge distributions, dipole moments, ionization potentials, etc. 
calculated in the ZDO approximation are not too different from those resulting 
either from Eq. (1) or Eq. (9). This does not imply ~F ~ ZD°F. Although Eqs. (7) and 
(9) are formally identical the Fock matrix of the latter has been obtained in 
a completely different way by explicitly performing the L6wdin transformation. We 
will see shortly that an approximate relationship ZF ~ ZD°F only holds in rt elec- 
tron methods. 

2.1 The ZDO approximation in ~ electron methods 

The ZDO approximation in n electron methods has been discussed by Fischer- 
Hjalmars [13]. Here we present a somewhat different analysis with two main 
objectives. We discuss (a) the consistency of the ZDO approximation with the 
neglect of penetration integrals appearing in the diagonal elements of the core 
Hamiltonian and (b) the transferability of matrix elements from one molecular 
environment to another one. 

Since the overlap integrals between n orbitals on neighboring carbon centers 
are not too large (S g 0.3) and since there is just one n orbital per center, a power 
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series expansion of the inverse square root of the overlap matrix does converge in 
this case: 

S - t / 2 = ( l + d ) - l / 2 = l - ½ d + ~ d  2 +  ... ,  (10) 

where d is a matrix containing zeros in the diagonal and the overlap integrals in the 
off-diagonal: 

d,~ = S,, - 8,v. (11) 

We first consider the one-electron part of the Fock Hamiltonian: 

"~h = S -  1 /2hS-  1/2, (12) 

Let us split h into diagonal and off-diagonal parts denoted as • and/~, respectively, 
as follows: 

~ v  = h,v6.v,  

3~ = h.~(1 - 6.~). (13) 

Using Eq. (13), applying the expansion (10) in Eq. (12) and restricting ourselves to 
terms containing overlap densities ~b.~b~ (# ¢ v) in first order we obtain 

;'h ~ (1 - ½d)~(1 - ½d) +/~ (14) 

or 

Zh.. = ;'a~ .~ a~, 

Xhl, v = ;']/~,v ~ fl~,v 1 - :rs.~(~. + ~v) ( ,  ~ v). (15) 

Note that only the leading term of the power series expansion (10) has to be 
considered in the case of the off-diagonal matr ix/ /because the matrix elements 
3.~ themselves contain diatomic overlap densities ¢.q~v(# # v) thus representing 
first-order terms, This definition of "order" deviates from the one used by Brown 
and Roby 1-15] who consider only the powers of the overlap integrals whereas we 
consider overlap densities no matter if they occur in an overlap integral or in 
a Hamiltonian matrix element. Thus, the matrix pd containing products of reson- 
ance and overlap integrals is first order in the sense of Roby and Brown but second 
order in the present definition. Please note that a resonance integral/~ is of the same 
order of magnitude as a product of the type ~S both being first order in terms of 
overlap densities. It is important to note that the second relation of Eq. (15) 
represents the resonance integral used in the Pariser-Parr-Pople (PPP) method 
[37] which must therefore not be identified with the corresponding integral//.~ 
in the AO basis. 

In contrast to the AOs which have the same form for two different atoms of the 
same type the L6wdin orbitals depend on the surroundings and may thus differ 
from e.g. one carbon atom to a neighboring one. This raises the question of 
transferability of matrix elements calculated in the L6wdin basis from one molecule 
to another. Equations (15) show that transferability is guaranteed to first order in 
the overlap because the matrix elements in Eq. (15) are only functions of the AOs 
~b. and ~b~. In principle, however, a matrix element in the L6wdin basis is a function 
of the whole AO basis set. It can be seen that the magnitude of the diagonal matrix 
elements of the core Hamiltonian is approximately the same in both the AO and 
the L6wdin basis whereas the absolute magnitude of the off-diagonal matrix 
elements is considerably reduced in the latter. 
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Now let us turn to the integrals appearing in the two-electron part G (Eq. (3)) of 
the Hamiltonian. Before starting our analysis we would like to mention that the 
first derivation of the two-electron integrals in the Lrwdin basis has been given by 
Julg [40]. He has shown that orthogonalization effects are of second order in the 
overlap and thus rather weak for rt systems of conjugated hydrocarbons. Denoting 
the AO and Lrwdin basis as {q$,} and {Z~}. respectively, we obtain 

z.t~.u'u.¢lv.~'u.~.s-.,., Ov.. o~.~ .,~.a • (16) 
g '  V' er' ~,' 

In the AO basis only Coulomb integrals of the type (¢u,¢,,1¢~,¢~,), i.e., those 
which contain charge densities 14~.1 z are easily available if the AOs are represented 
by Slater orbitals. However, the remaining ones which represent the vast majority 
can be reduced to those of the simple type using the Mulliken approximation for 
overlap densities [24]: 

= ~Suv(cbuq~ u + (a, gp,). (17) 

Note that Eq. (17) can only be used if the overlap densities appear in a Coulomb 
integral but not as an approximation to the overlap densities themselves [21, 41]. 
Inserting Eq. (17) in Eq. (16) results in a considerable simplification: 

1 ~ ' ~  ~'~ [ .~ , -  1/2 .~, + 1/2 ,-,+ 1 / 2 o -  1/2x z o -  1 / 2 o +  1/2 ~,+ 1/2 ¢ , -  1/2~ 
( X u z ~ l z = z x ) = 4 ~ , o u ' u  ou'~ +~u'u ~u'~ )7,'o't~,', ~,'z +~,, . ,  o,,z s 

-- /~' a ,e 

(18)  

with 

Yu,,, = (q$,.qS,. I q$,,q$,,). (19) 

Thus, the vast summation in Eq. (16) involving four sum indices has been reduced 
to two sum indices in Eq. (18). The two-electron integrals in the Lrwdin basis have 
an interesting property. Contrary to overlap densities in the AO basis an overlap 
density )~7~ appearing in an integral in the L6wdin basis is of second order in terms 
of AO overlap densities rather than of first order [40], i.e., integrals containing 
overlap densities in the Lrwdin basis are much smaller than the corresponding 
ones of the AO basis. To verify this we use again the power series expansion of 
Eq. (10) and a corresponding expansion of S + 1/2: 

s + 1/5 = 1 + ½d - 2 + . . .  (20)  

Inserting Eqs (10) and (20) into Eq. (18) we obtain to second order [40]: 

1 
O~,Z~I2&z~.) ~. 7 , ,6 ,v8,; .  + -~6,z Y'. Su'uS,' ,( ' /u, + 7~, - 27 , . , )  

,u'( ,~ ~, v) 

1 +ga,, (21) 

It is easily seen that this expression does not contain first-order terms. Moreover, 
the Coulomb integrals in the brackets on the right-hand side of Eq. (21) are of the 
same order of magnitude so that they cancel each other to some extent. Restricting 
ourselves again to first-order terms like in Eqs. (14) and (15) we end up with 

(;G)~ I)~,)0.) = 6,~6,~.2,,. (22) 

It can be seen from Eq. (22) that the Coulomb integrals 2,, are approximately the 
same in both the L6wdin and the AO basis, whereas Coulomb integrals containing 
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diatomic overlap densities are strongly reduced in the L6wdin basis so that they 
may be neglected thus justifying the zero differential overlap approximation. 

It is important to note that the Mulliken approximation [24] must not be 
applied to ~fl~v in Eq. (15) which would then vanish. This is a consequence of the 
presence of the kinetic energy operator A in the core Hamiltonian h. It has been 
demonstrated by Cook [42] that the resonance integral ~fl~v as given by Eq. (15) in 
the L6wdin basis is largely dominated by the kinetic energy contribution because 
the Mulliken approximation can still be applied to the potential energy part of the 
one-~lectron Hamiltonian h which then vanishes. Thus, the zero differential overlap 
approximation in the L6wdin basis holds in first order for the two-electron 
integrals but not for the resonance integral. We emphasize this point because ZDO 
methods are often accused of arbitrarily retaining diatomic overlap densities in the 
resonance integrals which cannot be skipped because they are essential for chem- 
ical bonding and neglecting the same overlap densities elsewhere. This cannot be 
considered as an inconsistency of ZDO methods. Actually, it seems more plausible 
to replace the expression "zero differential overlap approximation" by "differential 
overlap in first-order approximation", at least in the context of n electron methods. 

We would like to find a relationship between parameters of a given ZDO 
approach and the corresponding parameters in an AO basis subsequently sub- 
jected to the L6wdin transformation. This is very simple for z~ electron methods. 
Considering the core Hamiltonian matrix h we have already seen that the diagonal 
elements need not be changed (the neglect of rather small penetration integrals in 
ZDO parameters will be discussed below). The absolute magnitude of the reson- 
ance integrals, on the other hand, has to be enhanced by the arithmetic mean of the 
corresponding diagonal matrix elements multiplied by the overlap integral. Sub- 
sequent L6wdin transformation will then reduce the magnitude of the resonance 
integral approximately to the ZDO value as can be seen from Eq. (15). Thus, AO 
and ZDO matrix elements are related as follows: 

h## ~-- ~ ~,~ ZDOo~a, 

h~ = fl~, ~ ZDOfl~ + ½S~,(a~ + ~v) (# • v), (23) 

or in matrix form using Eq. (11): 

ZDOh = Ot + ZDOfl, 

h = a + ZDO~ + ½(~td + d~) = {(xS + S~) + ZD°IL (24) 

Performing the L6wdin transformation we obtain 

~'h = S -  I/2 h S  -1/2 = ½(S-1/2~S ÷1/2 + S+1/2~S -1/2) + S-1/2 ZD°~s -1/2. (25) 

Using the power series expansions (10) and (20) we obtain the expected result that 
)'h and ZD°h are identical up to first order: 

~'h ~ ,t + ZDO]~ = ZDOh. (26) 

It can be seen from Eq. (23) that the resonance integral fl~ in the AO basis is 
considerably larger in absolute magnitude than the resonance integral ZDOfl~, of the 
Pariser-Parr-Pople method. The two-electron part G of the Fock matrix F can be 
adopted directly from the ZDO basis because the L6wdin transformation does not 
change these integrals up to first order in the overlap densities. 

If second- and higher-order terms of overlap densities are included Zh and ZD°h 
are no longer identical. It is illustrative to consider the second-order terms in some 
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more detail because they are crucial in answering the question of the transferability 
of matrix elements. Using the power series expansion (10) and (20) we obtain from 
Eq. (25) up to second order: 

with 

;'h ~ ZD°h + A ~ + A p (27) 

with 

U, = ( ¢ . 1 -  ½A + VuI¢, ) (31) 

The terms in the sum on the right-hand side of Eq. (30) can be rewritten as follows: 

( ¢ ,  I V, I¢ . )  = - (a; fl#) - Z ,y , , .  (32) 

Z ,  is the number of rc electrons contributed by atom a. (o; ##) is the penetration 
integral first introduced by Goeppert-Mayer and Sklar [43] and represents the 
Coulomb interaction of a charge distribution 1¢, 12 with the neutral atom a. Note 
that this interaction is always attractive. The penetration integral itself is defined in 
such a way that it is positive so that a minus sign has to be added in Eq. (32). Since 
the penetration integrals are quite small for rt orbitals and all of the same sign they 
are often considered to represent a simple shift of the zero of the energy scale and 
are thus neglected. We will see below that there might be a more systematic reason 
for neglecting penetration effects in ZDO methods. Using Eqs. (30) and (32) and 
neglecting penetration integrals we can rewrite Eq. (29) as follows: 

( 1 1 (  
z ,  - Z 

a(e,u,v) 2 ( ~  ) 

, )) + Z~y~a + ~- ~ Z~y,~. . (33) 
2 a( e ~) ~ a( e .) 

In the following we assume that no heteroatoms contribute to the n system. Taking 
into account that the on-site repulsion integrals y, ,  and the valence state energies 

A ~ = - ¼d~d + ~(d2~ + ~d2), 

A # --- - -  ½(ZDOfld n t- d ZDOfl). (28) 

Considering a particular matrix element of A" we have 

A.v" =14 .( ,, .,~) ~ S ~ " S " v ( - ~ " + ~ * + ~ u )  ' (29, 

The bracket on the right-hand side of Eq. (29) contains terms of opposite sign. The 
matrix elements of A" may therefore be positive or negative and do not indicate 
clear-cut trends in their magnitude and sign. We would like to show that they may 
be neglected if the n system does not involve heteroatoms and excess charges. First, 
let us cast the matrix elements ~, into a somewhat different form. The core 
Hamiltonian has already been given in Eq. (6). Since each atom contributes one 
rc orbital to the conjugated system we may number the atoms in the same way as 
the n AOs themselves for the convenience of notation. Thus, we replace the capital 
letter A in Eq. (6) by greek indices. Using this convention and Eq. (6) we obtain for 
the diagonal elements: 

c~.= U , +  E (¢ , fV ,  l ¢ . )  (30) 
a( ÷ ~) 
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U, are all identical in this case we obtain from Eq. (33) 

Auv = E Su~S,,EZ~• -- 7,). + + . (34) 
~r( ~ ~+, v) ~. 

Even if there is no obvious reason for neglecting this term completely, it can be 
shown that it is approximately compensated by a corresponding term of opposite 
sign arising from the two-electron matrix G. This matrix may be split into a 
Coulomb and an exchange part: 

• z c zccx (35) '•G~.~ = Gu~ + v~.~. 

Using Eq. (3) and keeping in mind that we are dealing with matrix elements in the 
L6wdin basis we obtain 

• :• a 

~. cx 1 G,~ = ~ ~ - ~ Pz,()~b~ [qS,)~). (36) 
2 a 

Using the Mulliken approximation for the AO overlap densities occurring in the 
first of Eqs. (36) we can rewrite the Coulomb part as follows: 

~+G~,, = ~ N~•~.(ZuZ~ I¢~AbJ, (37) 
2 

where N~+~. represents the 9ross atomic population as introduced by Mulliken [44]: 

Nz). = ~. Pz, S~.,. (38) 
~r 

Expanding the L6wdin orbitals X,, Zv in Eq. (37) in terms of AOs, using again 
the Mulliken approximation and including overlap terms up to second order we 
obtain in the same manner which led us to Eq. (21): 

1 
(Z,)~v 14~.qSj ~ ?,~.6,~ + ~ ~( ~ S,~S~(-y~++½7~.+½?,D. (39) 

#,v) 

Inserting Eq. (39) into Eq. (37) we obtain 

1 
~+ ~ = 6,~2 N~.~?,~ +-~ 2 S , , S , v 2  N~ . ( -  ?,~ + ½?~. + ½?,~.)" (40) G I I V  . . 

). a( +a #,v) ;. 

Comparing Eqs. (34) and (40) we recognize that the second-order correction terms 
in these expressions cancel if Z~. = N~.~., i.e., if the charge distribution is uniform as 
is the case in neutral alternant hydrocarbons [45]. Even if the charge distribution 
shows some inhomogenity the terms still compensate each other to a large extent. 

We have just shown that the matrix A" is completely negligible in neutral 
systems if no heteroatoms are involved and provides for correction terms of 
varying sign otherwise. The sums occurring in the matrix elements of A ~, on the 
other hand, consist of products of resonance and overlap integrals which are 
always negative because resonance and overlap integrals are of opposite sign. 
Hence, they provide for a cumulative effect• Since the matrix elements of A ~ are 
all of the same sign their influence on the parameters can be clearly analyzed. 
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Neglecting A ~ we obtain the following matrix elements in the L6wdin basis from 
Eqs. (27) and (28): 

o( # ~) 

(41) 

It is easily seen that all second-order correction terms add a positive contribution 
to the matrix elements, thus diminishing them in absolute magnitude. Addition 
of a positive contribution to all diagonal matrix elements leads to an up-shift of 
the MO energy levels. But we can go further in our analysis showing that the 
second-order correction term in the diagonal matrix elements compensates to some 
extent the neglect of penetration effects in ZDO methods. Neglecting penetration 
effects in the ZDO diagonal elements, the integrals - (a; ##) contained in the AO 
parameters c~u (see Eq. (32)) have to be subtracted so that we obtain instead of the 
first of Eqs. (23): 

ZDOe. = e. + ~ (a; ##) (42) 
a( ~ ~) 

Thus, the diagonal matrix elements of the ZDO method are slightly up-shifted 
in energy as compared to the corresponding AO parameters. Note that a similar 
up-shift has also been obtained for the diagonal matrix elements of the LiSwdin 
basis represented by the second-order correction term in the first relation of Eqs. 
(41). Inserting Eq. (42) into the first relation of Eq. (41) gives 

;'h,, = ZDOe, _ ~ ((a; p#) + zD°fl~,S,,). (43) 
a( ~ iz) 

Assuming the resonance integral to be approximately proportional to the overlap 
integral we obtain 

~'h,u = ZDOc~g -- ~ ((a; ##) + k,,,S2,). (44) 

The proportionality factor ku, has been defined to be negative. Setting the reson- 
ance integral proportional to the overlap integral is quite common in semiempir- 
ical MO methods and sufficient to support the plausibility arguments presented 
in this paper. However, it must be considered as a rather crude approximation 
[46]. 

The terms in brackets on the right-hand side of Eq. (44) are of opposite sign. If 
they compensate each other approximately the diagonal elements of the L/Swdin 
basis are very close to the corresponding ZDO parameters thus justifying the 
neglect of penetration effects in the ZDO parametrization. It is quite obvious that 
both terms behave very similar as a function of the interatomic distance both 
decreasing rapidly with increasing distance between the atoms a and #. Numerical 
values for penetration integrals as a function of distance have been calculated by 
Parr and Crawford [47]. According to this work the decrease of the penetration 
integrals is much closer to that of S 2 than to that of S. 

In the following it proves useful to distinguish between nearest and second- 
nearest-neighbor interactions. We introduce the following notation for nearest and 
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second-nearest-neighbor resonance and overlap integrals: 

S#, ,+ x ~-- $1, 

S#,#+ z ~ $2, 

x 
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(45) 

All quantities given in Eq. (45) are in principle a function of the carbon-carbon 
bond lengths. For the present order-of-magnitude considerations it is justified to 
disregard the details of this dependence setting all nearest-neighbor overlap inte- 
grals equal to $1, etc. It is important to note that Sx,/?x are one order of magnitude 
larger than $2, /12. In the following we take into account only second-order 
correction terms of the type/?x Sx neglecting all the other ones. Thus, we can rewrite 
the first of Eq. (41) as follows: 

;'h~, = ~ - n~/?l $1. (46) 

n, represents the number of nearest-neighbor carbon atoms ranging from 1 to 3 in 
systems consisting of sp2-hybridized carbons. Thus, the diagonal matrix elements 
of the core Hamiltonian in the L6wdin basis depend on the number of nearest- 
neighbor carbon atoms as has already been found by Fischer-Hjalmars [13]. This 
indicates the dependence of these matrix elements on the molecular environment 
and their nontransferability if second-order terms are included. 

The second-order correction terms in Eq. (46) account approximately for the 
penetration integrals of carbon nearest neighbors. However, there might be also 
hydrogen nearest neighbors which provide for penetration integrals of roughly 
the same magnitude as those of carbon [13]. These are not compensated by 
second-order correction terms as in Eq. (44) where we included only carbon atoms. 
This argument clearly shows that second-order correction terms of the L6wdin 
basis cannot compensate the neglect of penetration integrals in ZDO parameters in 
a consistent way. 

We discussed this point in some detail because in the very first version of 
CNDO denoted as CNDO/1 penetration effects were included [lb]. It turned 
out that the bond lengths calculated by this method were too small. Neglect of 
penetration effects in the next version CNDO/2 corrected this error [lc]. This gives 
empirical support to the hypothesis that the neglect of penetration integrals is 
consistent with the ZDO approximation. However, the analysis just given can in 
general not be extended to all-valence-electron methods because it rests on a power 
series expansion which is only possible for sufficiently small overlap integrals. We 
will come back to this point below. 

Now let us discuss the influence of second-order correction terms on the 
off-diagonal elements. For topological reasons no terms of the type flxSx occur in 
the second-order correction terms for the off-diagonal matrix elements between 
nearest neighbors so that we obtain from the second relation of Eq. (41) and 
Eq. (45): 

;'hu,,+ x = fix. (47) 

Thus, nearest-neighbor resonance integrals are correctly represented in the ZDO 
approximation and transferability is guaranteed even in second order. There is one 
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notable exception, however. This is the cyclopropenyl ring consisting of an equi- 
lateral triangle of three carbons forming a conjugated r~ system. Obviously, there 
are only nearest-neighbor carbons in this triangular molecule so that all overlap 
and resonance integrals are equal to $1 and ill, respectively. We therefore obtain 

;'h12 --= ZDOf112 - -  ½(ZD°fl laS32 q- s13ZD°f132)  = f l l  - - i l l S 1  • (48) 

Comparison with Eq. (47) shows that the resonance integral is reduced for a cyclo- 
propenyl ring. This demonstrates the dependence of resonance integrals in the 
L/Swdin basis on the environment so that a consistent parametrization is not 
possible. The particular case of the cyclopropenyl ring corresponds to the equilat- 
eral triangle of hydrogen atoms discussed by de Bruijn [14a] who also considered 
the case of four nearest-neighbor hydrogens, i.e., a tetrahedral arrangement with no 
central atom where the resonance integral is diminished even further than in the 
equilateral triangle. This led him to  the more general conclusion that the ZDO 
approximation is bound to fail for small molecules with many nearest-neighbor 
pair interactions. De Bruijn pointed to the fact that MINDO/3 calculations 
underestimate the strain energy in small rings [2c]. 

Nevertheless, in general the second-order correction terms do not enter into 
nearest-neighbor resonance integrals of the r¢ system in conjugated hydrocarbons 
which might be one of the reasons for the success of the PPP method. More 
troublesome is the case of second-nearest-neighbor resonance integrals. From the 
second relation of Eq. (41) and Eq. (45) we obtain 

;'h~, ~ + 2 ZDOfl~. ~ + 2 -- 1 zoo = ~( 3.,.+1S~+1.~+~ + S.,.+~ZD°3.+~,.+~) = 3 2 - 3 ~ S 1 .  

(49) 

The second-nearest-neighbor resonance integral f12 is quite small and of the 
same order of magnitude as the product illS1 so that the two terms in Eq. (49) 
compensate each other to a large extent making this matrix element negligibly 
small. De Bruijn commented somewhat ironically that this lends support to 
"re electron theoreticians who have maintained for nearly fifty years that/313 is 
negligible" [14a]. Note that our analysis is a generalization of the one of de Bruijn 
who discussed the special case of three centers with one s orbital on each center. 

In the abundant literature on ZDO methods no attention has been paid to the 
systematic errors in the MO energy spectrum due to this approximation, at least as 
far as we know. This might be due to the fact that the MO energies of the frontier 
orbitals in the H O M O - L U M O  region are reproduced reasonably well whereas 
the remaining part of the MO energy spectrum is often thought to be of minor 
chemical relevance. It is evident, however, that the MO energy spectrum should 
bear at least some resemblance to the photoelectron spectrum. The systematic 
errors in MO energies of ZDO approaches are mainly due to the difference 
between the core Hamiltonians ;'h and ZD°h caused by second- and higher-order 
overlap terms. In n electron methods, these errors might not lead to large shifts of 
MO energy levels provided we are concerned with smaller 7~ networks. We will see 
in Sect. 3, however, that these shifts are by no means negligible for a levels in 
all-valence-electron methods. Even in n systems, the magnitude of the MO energy 
shifts depends sensitively on the size of the r~ system. In extended rt networks (for 
example graphite) with a broad MO energy spectrum the shifts of the innermost 
occupied and outermost virtual MOs are enhanced. We would like to illustrate our 
point by using ethylene as a simple example. Each of the two carbons contributes 
one p~ orbital. We thus obtain a bonding and an antibonding 7t MO with energies 
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E = e +_ ZDOfl in a simple Hiickel model [48], i.e., the MO energies are symmetric- 
ally split around ~ in the ZDO method. In a full-overlap basis, however, the MO 
energies are given by E = (e _+ fl)/(1 _+ S). Thus, the splitting is asymmetric, the 
energetic up-shift of the antibonding MO with respect to ~ being more pronounced 
than the corresponding down-shift of the bonding MO [49]. This asymmetry in 
MO energy splittings plays an important role in qualitative MO theories [49]. It is 
a second-order effect in terms of overlap densities which is missing in the ZDO 
scheme. 

To observe the general trends of the MO shifts we choose arc system involving 
only carbons using a simple Hfickel model [48]. We assume again the resonance 
integrals to be proportional to the corresponding overlap integrals. Since no 
heteroatoms are involved the proportionality factor denoted as k is the same for all 
resonance integrals. We therefore obtain the following Hiickel secular matrix: 

ZDO h = g + ZOOfl = ~1 + kd. (50) 

Thus, using S = 1 + d we obtain from Eq. (25) 

Zh = ~1 + k(1 + d)-X/2d(1 + d) -1/2 = ~1 + k(1 + d)-Xd. (51) 

It is easily seen that both Hamiltonian matrices (50) and (51) commute with the 
overlap matrix S = 1 + d or d itself. It has been pointed out by L6wdin [8] that this 
simplifies the analysis considerably. Both the overlap matrix and the Hermitian 
matrices (50) and (51) are then diagonalized by the same unitary matrix C. 
Introducing the diagonal matrix 

O = C+dC (52) 

we obtain the following diagonal eigenvalue matrices from Eqs. (50) and (51): 

ZDOg ----- C + ZDOhC = ~1 + kD, 

;'8 = C+'~hC = ~1 + k(1 +D)-ID.  (53) 

In Eq. (53) we have used the fact that the unitary matrix C not only diagonalizes 
d but also any function f (d)  resulting in a diagonal matrix f(D). The eigenvalues in 
the ZDO and in the L6wdin basis can now be written as follows: 

ZDOe i = ~t + kDi, 

;'•i = O~ -t- k - - D i  . (54) 
1 +Di 

D~ are the eigenvalues of the matrix d = S - 1. Note that the eigenvalue spectrum 
(54) of ZD°h has the same structure as the eigenvalue spectrum Si = 1 + Di of the 
overlap matrix S in this simple case. In n systems we have I Di I<  1 which is 
a necessary condition for convergence of the power series expansions (10) and (20). 
The bonding and antibonding MOs correspond to positive and negative eigen- 
values D~, respectively, of the overlap matrix. From Eq. (54) we obtain 

~'~i = zD%i - k (55) 
l + D i  

The constant k is negative because overlap and resonance integrals are always of 
opposite sign. Thus, there is an up-shift of all canonical MO energies in the LSwdin 
basis which is most pronounced for the most antibonding levels, i.e., those with 
D~ being large and negative. It is also relatively large for strongly bonding levels 
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(Di large and positive) whereas the energy levels near the HOMO and LUMO (Di 
small) are not much affected. It is now clear that the magnitude of the MO energy 
shifts depends on the breadth of the MO energy spectrum which is closely related 
to the spectrum of eigenvalues of the overlap matrix. Although the eigenvalues of 
~h and ZD°h are different their eigenvectors are the same being simply represented 
by the coefficient matrix C. This would no longer be the case if heteroatoms were 
involved because then the overlap matrix does not commute with the Hamiltonian 
matrices. Note that the present analysis does not rely on a power series expansion. 

Even if this simple analysis cannot be generalized we will see later that the shifts 
in the MO energy spectrum show the same trends in considerably more sophis- 
ticated all-valence-electron Hartree-Fock MO methods. 

A Hartree-Fock rc electron method based on explicit performance of the 
L6wdin transformation has been developed by Berthier et al. [7]. The two-electron 
integrals in this method are evaluated according to Eq. (18) in the L6wdin basis 
neglecting those containing overlap densities ZuXv (l~ ¢ v). 

2.2 The ZDO approximation in all-valence-electron methods 

In rc electron methods the relationship between ZDO parameters of the one- 
electron Hamiltonian and the corresponding parameters in an AO basis was given 
by Eq. (23). This choice was based on a power series expansion of the inverse square 
root of the overlap matrix. Unfortunately, an expansion as given by Eq. (10) or 
Eq. (20) is in general not possible in all-valence-electron methods. It has been 
shown by Gray and Stone [16] that the matrix d has eigenvalues exceeding 1 for 
methane which cannot be considered as a particularly exotic molecule. In this case 
a power series expansion according to Eq. (10) or Eq. (20) does not converge so that 
one can no longer rely on arguments based on a truncated expansion. 

If the possibility of a power series expansion of S-1/2 has to be discarded there 
is no obvious justification of the ZDO approximation and thus no obvious 
relationship between ZDO parameters and the corresponding parameters in an 
AO basis as given by Eq. (23). In a first approximation we nevertheless retain 
Eq. (23) which turns out to be a reasonable choice as we will see later. However, in 
contrast to rc electron methods, Eq. (26) no longer holds, i.e., the one-electron 
Hamiltonian in a true L6wdin basis cannot even approximately be identified with 
the corresponding ZDO Hamiltonian in all-valence-electron methods. 

Even if a rigorous justification of Eq. (23) might be difficult we will try to show 
that it is the most plausible choice. Let us assume that the electrostatic potential in 
a molecule is changed by exposing it to an electrostatic field corresponding to an 
electrostatic potential A V. The one-electron Hamiltonian/~ has then to be replaced 
by h + A V leading to the following change of the one-electron Hamiltonian matrix 
elements in an AO basis: 

t 

! 

(56) 

Here we have assumed that the electrostatic potential varies only slowly within the 
region where the density ~buq5 v is nonnegligible, zt Vu and A Vu~ are, respectively, the 
values of the potential A V at the atom to which q~, belongs and in the overlap 
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region between the orbitals ~b, and ~bv. In the L6wdin basis a similar equation is 
obtained: 

/~v = < z ~ l f i +  AV Izv> ~ " ~ .  (57) 

Comparison of Eqs. (56) and (57) shows that the resonance integrals/~u~ are only in 
the orthogonal basis approximately invariant against a change of the electrostatic 
potential, not, however, in the AO basis. Consequently, the resonance integrals in 
an AO basis are not transferable from one molecule to another. E.g., if a hydrogen 
atom with core charge + 1 is replaced by fluorine with core charge + 7 (nuclear 
charge shielded by two inner shell electrons) with the rest of the molecule being 
unchanged the resulting change of the electrostatic potential will affect all reson- 
ance integrals in the molecule. 

It is clear that the electrostatic potential does not enter into the parametrization 
of the resonance integrals ZDO/~u~ in any semiempirical MO method so that these 
integrals are invariant against a change of the electrostatic potential caused by 
a source exterior to the atoms on which the orbitals ~b u and q~ are localized, e.g. 
replacement of a third atom by another one. Thus, the ZDO parameters zD°e u and 
ZDO/~uv obey Eq. (57). If we are looking for a relationship to the corresponding 
parameters in an AO basis we have to take care that the latter transform according 
to Eq. (56). Now it is obvious that Eqs. (23) represent the most plausible choice with 
respect to this requirement. From Eqs. (23) and (57) we obtain 

t ~, ZD%~, = ZD%, + A V, = ~ + ,4 V,, 

, 1 , , zDo/~.~ ,4v~ + ,4vv) /~.~ = zDo/~. + z s , ~ ( ~  + ~v) = + ½s,~(~, + + ~ 

= fl~ + ½s~(,4v~ + ,4v~). (58) 

Provided that 

,4 Vu~ .~ ½(,4 V u + A V~) (59) 

we recognize that AO parameters obtained from Eq. (23) transform correctly 
according to Eq. (56). Since we assume the gradient of A V to be sufficiently small 
Eq. (59) will be fulfilled if the atoms on which the orbitals q~u and ~b~ are localized 
are not too distant from each other. For distant atoms, on the other hand, Su~ will 
be negligible so that Eqs. (58) are equivalent to Eqs. (56), even in this case. To 
summarize, the second term on the right-hand side of the second of Eqs. (23) is 
necessary to insure the correct transformation properties with respect to changes of 
the electrostatic potential. 

Again the question of penetration effects arises. The most common semiempiri- 
cal methods [1-4] neglect penetration integrals although there has been an effort 
to include them in the CNDO and INDO method [50, 51]. As already mentioned, 
Pople [lc] found that neglect of penetration integrals led to improved bond 
lengths, at least in his original CNDO parametrization. Numerical calculations of 
Coffey [52] for C2 seem to confirm this. He found that neglect of both penetration 
integrals and an additional pseudopotential accounting for the effects of core- 
valence orthogonality [53] leads to a surprising numerical agreement of CNDO 
core attraction integrals with the corresponding parameters in the L6wdin basis 
over the whole range of carbon-carbon distances. However, it is by no means 
evident how this analysis might be generalized to polyatomic molecules. We have 
shown in the previous section that neglect of penetration integrals might be 
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justified for rc electron methods because the L6wdin transformation provides for 
a second-order term in the diagonal elements which is opposite in sign to the 
penetration integral and shows a similar behavior as a function of the interatomic 
distance. If a power series expansion according to Eqs. (10) and (20) were possible 
this analysis could be extended to all-valence-electron methods. Unfortunately, this 
is not fulfilled. In any case, if penetration effects are neglected in ZD°c~ u they should 
nevertheless be included in the AO basis, i.e., the first of Eqs. (23) should be 
replaced by Eq. (42). We will show that explicit transformation of matrix elements 
to the L6wdin basis leads on the average to an energetic up-shift of the diagonal 
elements of the core Hamiltonian ;~h as compared to the corresponding AO matrix 
elements thus giving at least the same trend as the neglect of penetration integrals 
in ZDO matrix elements (Eq. (42)). Since the ZDO matrix elements must be 
compared to the corresponding matrix elements in the true L6wdin basis the 
diagonal elements of the ZDO core Hamiltonian would be too negative in energy if 
we simply set them equal to the corresponding matrix elements in the AO basis 
according to the first of Eqs. (23). Consequently, the total electronic energy would 
also be too negative. Neglect of penetration integrals in ZDO matrix elements 
(see Eq. (42)) may partially correct this error although it remains unclear to what 
extent. To support this very crude argument, it remains to be shown that the 
Lbwdin transformation increases the average of the diagonal matrix elements ~hu,. 
From Eqs. (24) and (25) we obtain 

tr ZD°h = tr e, 

tr ~'h = tr • + tr (S- 1/z zDo/~ S-  1/2). (60) 

In the second of Eqs. (60) we have used the fact that the trace of a matrix product is 
invariant under cyclic permutation of the factors. The reasonance integrals can 
again be assumed to be approximately proportional to the corresponding overlap 
integrals. The proportionality factor will of course depend on the atoms involved. 
To show the general trend it might be sufficient to replace the different propor- 
tionality constants by an average value so that we obtain in analogy to Eq. (50): 

zDop = kd. (61) 

Using Eq. (61) we obtain 

tr (S- 1/2 zDo/~ S -  1/2) = k tr (1 + d)-  ld. (62) 

The Hermitian matrix d is brought to diagonal form by the unitary transformation 
(52) which leaves the trace invariant so that we obtain 

Di (63) tr (S- 1/2 zDo/~ S -  1/2) = k . 1 + D~" 

Since t rd  = t rD = 0 there must be positive and negative values D~ summing up to 
zero. We obtain 

D~ 
l + D i  
- - < D i  ifD~> - i  (64) 

The case D~ < -- 1 has to be excluded because in that case the overlap matrix S no 
longer represents a positive-definite metric for the vector space spanned by the 
AOs. Note that the AOs are no longer linearily independent if there are eigenvalues 
Di = - 1 corresponding to zero eigenvalues of the overlap matrix S [54]. 
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Since t rd  = t rD = 0 and k < 0 it is easily seen from Eqs. (63) and (64) that 

t r(S- 1/2 ZDO~s- 1/2) > 0, (65) 

Thus, the L6wdin transformation can be expected to lead to an energetic up-shift 
of the diagonal elements of the core Hamiltonian, at least on the average. An 
analogous up-shift is obtained in the ZDO diagonal elements if penetration effects 
are neglected, i.e., if the first of Eqs. (23) is replaced by Eq. (42). 

Now let us turn to the two-electron integrals. The transformation according to 
Eq. (16) still holds but the Mulliken approximation [24] can no longer be used 
because we now have several AOs on the same center. It has been shown by 
Ruttink [55] that invariance of multicenter integrals against rotation of the local 
coordinate axes or hybridization is only guaranteed if the Ruedenberg approxima- 
tion [25] is used instead of the Mulliken approximation. In the Ruedenberg 
approximation diatomic overlap densities are replaced by monocenter terms as 
follows: 

= ~bo,~bv, . (66) 
~a P~ 

The additional subindices A, B symbolize the atomic centers on which the corres- 
ponding orbitals are located. Please note that Eq. (66) is not a good approximation 
to the  overlap densities themselves but should only be used when appearing in 
a Coulomb integral. In the original paper of Ruedenberg [25] it was shown that an 
orbital on one center can be expanded in a complete basis set on the neighboring 
center but in our case an interpretation in that sense is not possible because the 
basis sets on a distinct center are much too limited. 

In the following we discuss the transformation of two-electron integrals from 
the AO to the L6wdin basis. In the AO basis only two-electron integrals retained in 
the NDDO method are needed explicitly, the remaining ones being calculated by 
the Ruedenberg approximation. It will be helpful to employ a matrix notation in 
the following. Thus, we introduce the charge density matrix 

I2 = ~b + ~b. (67) 

Here the AO basis vectors have been collected into the row matrix 
= (q51, ~b2, . . . ,  ~b,). Using Eq. (67), Eq. (66) can be rewritten as follows: 

12 = ½(12°S + SI2°). (68) 

I2 ° is a block diagonal matrix containing only charge densities localized on 
a distinct center, i.e., the mono-center terms in an NDDO approach: 

~o 6 * ,Av= aB~b,A~b~ B. (69) 

In the following it will be useful to introduce a block notation for the matrices 
resulting from a division of all matrices X into submatrices XaB of dimension 
da x dB with da and dB being the dimension of the AO basis sets on centers A and B, 
respectively. Thus, Eqs. (68) and (69) can be rewritten as follows: 

~-~ AB "~" 1 0 ~(~'~ A A S  AB "Jr- S AB•OB), 

~-~0 o = ~ A B ~ O A  . (70) 
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Note that any submatrix Saa on the block diagonal is a unit matrix of dimen- 
sion dA" 

S A A  = la (71) 

Inserting Eq. (71) into the first of Eqs. (70) confirms that the block diagonal 
elements of 12 and 12 ° are identical: 

~'~ A A  = ~-~OA" (72) 

Using the Ruedenberg approximation (68) we obtain for the charge density in the 
LiSwdin basis: 

q 2  = S -  ~ / 2 ~ S  - ~/2 = ½(S-  X/212°S + ~/2 + S +  t / 2 I I ° S  -1/2)  

or in block notation: 

(73) 

• LX~tc-1/2o0 c+t/2 c+l/2o0 c-x/2~ (74) 
J'~-~AB = 2 /  ~ U"~AC ~a'CCJ'JCB + ° A C  ag'CC~"~CB 1" 

C 

Equation (74) indicates that e.g. the charge density zf2vA~, = [X~,A 12 on atom A in the 
L6wdin basis involves contributions from AOs of all atoms in the molecule. Upon 
integration over the whole space we obtain from Eq. (74) 

f~'O,,...dv=flz..12dv=Y~q,,~=l (75) 
C 

with 

q C = V S -  x /2x  + 1/2 (76) 
,UaOc ~,Uaac • 

6C 

q C indicates the charge contribution from AOs on atom C to the charge of an 
electron in the L6wdin orbital Zv~. From Eq. (75) one might suspect that the charge 
distribution I Z~A 12 is less well localized than the corresponding charge density [~b~A 12 
in the AO basis because the former contains contributions from AOs of all atom 
centers. However, this is not the case. In fact, the L6wdin orbitals are even more 
localized than the corresponding AOs as has been discussed previously [13]. Thus, 
q~a > 1 in Eq. (75), whereas the remaining terms q C (C # A) are negative. The fact 
that the L6wdin orthogonalization leads to a concentration of charge density on 
the atom centers is also indicated by an increase of the one-center two-electron 
integrals in the L6wdin basis as compared to the corresponding integrals in the AO 
basis. 

The four-dimensional array of two-electron integrals can now be written by 
forming the tensor product of the charge density matrix 12 with itself and sub- 
sequent integration: 

f e2 (~ I~) = /2(1) ® ~ ( 2 ) - -  dr1 dr2. (77) 
F12 

For the two-electron integrals in the L6wdin basis we obtain using Eq. (74): 

('~I2aal~'I2ee) = ~ ~oac o c n  "AC , 'Cn )~, .CC 

X ( ¢ , - 1 ] 2  c + 1 / 2  ± t" + 1 / 2 ~ ' - 1 / 2 5  
k O  E D  O D F  7 -  O E D  O D F  ).  (78) 
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Considering a distinct integral from the four-dimensional array given by Eq. (78) 
we obtain the following expression: 

(Z, ,Z, ,IZ~Z;~,.)  - 4 c E E  , , . .  . . . . .  + 
l~c Vc 

.4. ~ ~ r S - 1 / 2 S + U 2  . S+1/2S-U2"~ (79) x(4'.cd'vo ~'.o~'~.o)t . . . .  ~o~., , -  . . . .  ~.,,~., ,'. 

Applying the N D D O  approximation in the L6wdin basis we neglect diatomic 
differential overlap terms: 

(~'I2AB I;~EF)NDDO = JAB 6E~'(~'~Aa I ~'r&e). (80) 
The reliability of N D D O  calculations rests on the validity of the approximation 
(80). The two-electron matrix ;'G in the L6wdin basis is represented by an expres- 
sion analogous to Eq. (3) with the AOs gb, replaced by L6wdin orbitals X, and with 
the bond order matrix P replaced by 

)'P = S 1 / 2 p s  1/2. (81) 

Using the N D D O  approximation (80) and splitting the two-electron matrix into 
a Coulomb and an exchange part in analogy to Eq. (36), we obtain 

C ac 2c 

Note that the two-electron integrals in Eq. (82) have been obtained by explicitly 
performing the L6wdin transformation (Eq. (79)) thus being adapted to the 
molecular environment. 

If it were possible, a power series expansion of the matrices S-1/2 and S ÷ 1/2 
would again show us the justification of Eq. (80) up to first order in complete 
analogy to the reasoning given in the previous section for n electron methods. An 
attempt to justify the N D D O  approximation without reference to a power series 
expansion has been made by Roby [18]. It is based on the assumption that the 
basis sets on the distinct atom centers are sufficiently large so that the Ruedenberg 
approximation (Eq. (66) or (68)) can be considered as a good approximation to 
the charge densities themselves instead of just a method for approximating two- 
electron integrals containing diatomic overlap densities. This leads to the commu- 
tation relation [I2 °, S]  = 0 which is crucial for Roby's reasoning [18]. It is easily 
seen that this relation does not hold for small AO basis sets including only valence 
orbitals. If we consider, e.g., two p~ orbitals denoted as na and re8 on neighboring 
centers A and B the commutation relation [12 °, S] = 0 would give Irma I2S = Inn 12S 
with S being the overlap integral between the orbitals 7ta and riB. Thus, a two- 
electron integral (rCanBInar~a) could be approximated by either S(nAr~A I nAr~a) or 
S ('rib ~ I ~A nA ) implying (rt A r~ A I rtana) = (rob rtB I rtA rCa) which is clearly a very po or 
approximation. The critical reexamination of Roby's arguments by King et al. [19] 
is also based on the assumption of complete basis sets on the atom centers which 
leads to infinite degeneracies of the eigenvalues of the overlap matrix not con- 
sidered by Roby [18] and invalidating some of his conclusions. Again we would 
like to stress the limitation of basis sets in practical calculations preventing 
the occurrence of such degeneracies except those imposed by the symmetry of a 
molecule. 
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The mono-center charge distributions appearing in D ° may be expanded in 
spherical harmonics around the respective centers [56] giving the corresponding 
multipole moments. Distinguishing between the monopole term a °° and the 
higher multipole moments summarized under the symbol a °~ we obtain: 

a ° c  = a c  °° + ag . (83) 

The isotropic monopole contribution has a particularly simple form: 

a ° °  = p ° l  c .  (84) 

pO is an AO charge density with spherical symmetry around center C. Note that the 
two-electron integrals retained in the CNDO method are just those arising from 
the monopole term. Thus, even charge densities involving AOs with orbital 
quantum numbers l > 0 which do not have spherical symmetry are replaced by 
pO in the CNDO approach. In the original CNDO and INDO versions [1] the 
charge density of a valence s orbital was taken for pO but frequently it is not 
necessary to specify these charge densities because the two-electron integrals in 
which they appear are parametrized by using either the Dewar-Sabelli-Ohno- 
Klopman relation 157] or the Mataga-Nishimoto approximation [58]. It should 
also be noted that the Ruedenberg approximation (68) reduces to the Mulliken 
approximation if only the monopole terms are taken into account. Neglecting the 
contributions from higher multipoles we obtain from Eqs. (78) and (84): 

1 2 • " [ • - 1 / 2 • + 1 [ 2  ~-,+ 1/2 t-v- 1/2 h , f ~'v- 1/2 C,+ 1/2 S + l / 2 S - 1 / 2 ~  
()~aanlq2ee)=4 c z-"~°aco o c ~  + o a c  o c n  ) r c m o E o  o o F  + r o  o r  ) 

(85) 

with 7cD being the two-electron integrals of the CNDO method: 

YcD = (P°IP°). (86) 

Since the monopole-monopole interactions in Eq. (85) are long-range interactions 
they are all quite large and we may replace the different Coulomb integrals 7co by 
their average value. The integrals (85) then vanish for A ¢ B or E ¢ F because 

~ c -  1/2c+1/2 lafan. (87) oAC oCB 
C 

Even if this is a very crude approximation the different terms in the sum (85) 
are likely to average out to some extent for A # B, E ¢ F, thus providing some 
justification for the neglect of diatomic overlap in the Coulomb integrals of the 
L6wdin basis according to Eq. (80). However, applying the NDDO scheme 
(Eq. (80)) one might well neglect contributions which could be of the same order of 
magnitude as many of those retained, especially those arising from higher multi- 
pole moments which are essential in distinguishing the NDDO from the CNDO 
method. 

Note that there is no justification for neglecting diatomic differential overlap in 
the AO basis, especially in all-valence-electron methods where the overlap integrals 
can get quite large. This becomes evident if we write the two-electron integrals in 
the AO basis in block form using Eq. (70): 

= o + (aOAl O) + + 

(88) 
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It has been shown by Ruttink [55] that the charge density matrix (68) trans- 
forms correctly under a local transformation of orbitals on the same center 
(hybridization or rotation of local coordinate axes), i.e., if the transformation 
matrix has the same diagonal block structure as g2 ° itself. It may be shown in an 
analogous manner that the charge density matrix ~'~2 in the L6wdin basis as 
represented by Eq. (73) also transforms correctly under such a transformation. 
Thus, no invariance problems of the integrals with respect to local transformations 
arise in an NDDO approach. However, some care is necessary in CNDO or INDO 
methods. If we apply the CNDO approach in the AO basis, i.e., retain only the 
monopole contribution, the charge density matrix g?° c is diagonal (Eq. (84)). 
However, this does not imply that the charge density matrix Z~cc in the Lifwdin 
basis is also diagonal. It can be easily seen from Eq. (74) that this is not the case. It 
does not help to simply neglect the off-diagonal terms in ZF~cc because this would 
violate the invariance requirements with respect to rotation of local coordinate 
axes or hybridization. In order to apply the CNDO scheme to the integrals in the 
L6wdin basis an averaging procedure is necessary: 

with 

~'~cc = toclc (89) 

1 Z ~a (90) 
O C  = d c  ~c ~c~c" 

Remember that dc is the dimension of the AO basis set on Center C. If we now apply 
a local unitary transformation 

~'~ = ~c Uc 

t 

Zc = XcUc (91) 

to the orbitals on a center C the trace of the local charge density matrix contained 
in Eq. (90) remains invariant so that the correct transformation properties are 
now insured. Remember that such a unitary transformation operates on both the 
L~wdin and the AO basis in the same way [8]. Thus, the two-dectron integrals in 
a CNDO approach are calculated as follows: 

. 1 2  (t'OaltOB) dAdn u. ~ (;'O,.,. I~f2 .... ) (92) 

In the INDO scheme such an averaging is only applied to two-center integrals 
(A ¢ B) whereas all one-center integrals are retained. Nevertheless. a complication 
arises. In an AO basis consisting of s and p orbitals only Coulomb integrals 
(~)i~)ilt~j(~j) and exchange integrals (~biq~j [~bj~bi) need to be considered. All other 
one-center integrals vanish due to the spherical symmetry of an atom. This is no 
longer the case in a L/Swdin basis where all one-center integrals are nonvanishing 
and need to be taken into account if the invariance requirements are to be met. If 
d orbitals are included there are quite a few one-center integrals which vanish for 
symmetry reasons in an AO basis but not in the L6wdin basis. This indicates again 
the inconsistency of ZDO methods pretending to operate in a L6wdin basis but 
determining the parameters as if an AO basis were used. Using Eqs. (78) and (80) 
the two-electron integrals are calculated in the L~iwdin basis rather than in the AO 
basis but the simplicity of the NDDO approach is retained due to Eq. (80). 
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If one wants to avoid the disadvantage of neglecting two-electron integrals 
there is an alternative. One could calculate the Fock matrix elements in the AO 
basis according to Eqs. (2) and (3) using the Ruedenberg approximation for those 
two-electron integrals containing diatomic differential overlap. Thus, only the 
NDDO integrals are explicitly needed. Such a procedure dispenses with the need to 
store the complete four-dimensional array of two-electron integrals as in ab initio 
methods. However, there is a price to pay for this saving of computer memory 
apart from possible inaccuracies of the Ruedenberg approximation. The evaluation 
of the Fock matrix elements which has to be repeated in each iteration step is then 
considerably more time consuming than in a method based on the storage of the 
complete set of two-electron integrals. Let us rewrite the two-electron part of the 
Fock matrix elements (3) as follows: 

G,.,,,, = ~ , ~ . ~  P;.,,,c((4%,,cp~,lc~c4);,,,)-½(c~,,,,~92~l~c~,)). (93) 
C D ~c 20 

Splitting the two-electron matrix G into a Coulomb and an exchange part 
in analogy to Eq. (36) and inserting the Ruedenberg approximation in Eq. (93) 
we obtain 

oc _1 z 

v~ / 

2~ v~ 

+ E Y', S,,,,2oS~,,~,,,(4),,,,6,,,:, I 4~cqL~) 
x 

+ E Y'. S,~,S~,~ (¢,~ ¢,~ [ ¢,~ ¢,.) ) .  (94) 
/ 

It is easily seen that the Coulomb part may be further simplified. We obtain 

c ) = 2}-'.N,,~a S,a,,(4~,qS,,~l~b,~bo~) + Y'.S,.. ;(4.~¢..14.~¢..; :) • (95) 
, ,,~ 

Here we have introduced the bond order matrix as defined by Chirgwin and 
Coulson [59]: 

N = ½(PS + SP). (96) 

Note that the diagonal elements of the matrix (96) represent the gross populations 
defined by Mulliken [44]. It can be seen from Eq. (81) that this matrix is related to 
the bond order matrix in the L6wdin basis as follows: 

N = ½(S- 112 :.ps + 1/2 + S + 112 ; 'PS- 1/2). (97) 

It is obvious that Eq. (94) takes into account the complete set of two-electron 
integrals although only the NDDO integrals appear explicitly. Since no integrals 
are neglected the only approximation involved being the Ruedenberg approxima- 
tion, this procedure is more accurate than the NDDO approach based on Eqs. (78) 
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and (80) after transformation of the two-electron integrals to the LSwdin basis. 
However, it is less economic due to the extensive sums in Eq. (94). The Coulomb 
part of the two-electron matrix can be simplified according to Eq. (95) so that these 
matrix elements can be calculated rather efficiently but the exchange part remains 
complicated involving a double sum over the atomic centers. 

Equation (94) simplifies considerably if we neglect the higher multipole mo- 
ments of the charge distributions thus retaining only the two-electron integrals of 
the CNDO method. The Ruedenberg approximation then reduces to the Mulliken 
approximation and Eq. (94) is replaced as follows: 

Go = ~ c  o ~  1 ~.,. P).,~cS~d, oS,.,,(Tac + 7,c) = -~ E E N .... S~,,(Tac + 7BC), 
C a c 

G;:,, =--I~'~2P,.o~,S,,,.DS~c,,.(~/oc+8 c '.. ~a ,+  7ac+ 7DB). (98) 

This is the procedure suggested by Yonezawa et al. [6]. 
Let us briefly summarize how to proceed from a given ZDO method to an 

improved method based on explicit performance of the L5wdin transformation. 
The matrix elements of the core Hamiltonian in an AO basis can be obtained 
according to Eq. (23) from the ZDO matrix elements except that penetration 
integrals usually neglected in ZDO methods should be added to the diagonal 
matrix elements. Concerning the two-electron matrix G we have two possibilities. 
One could transform the complete four-dimensional array of two-electron integrals 
to the LSwdin basis using the Ruedenberg approximation for integrals containing 
diatomic overlap densities in the AO basis (Eq. (78)) and apply the NDDO 
approximation to the transformed integrals in the LSwdin basis (Eq. (80)). Then the 
two-electron matrix ~G is calculated (Eq. (82)) and added to the transformed core 
Hamiltonian matrix ~'h. Once the two-electron integrals in the LSwdin basis have 
been calculated this procedure is not more time-consuming than the usual NDDO 
method based on the ZDO approximation. A second possibility is to calculate 
the two-electron matrix G in the AO basis according to Eqs. (94) and (95) using 
again the Ruedenberg approximation, adding it to the core Hamiltonian matrix 
h and transforming the complete Fock matrix F to the L6wdin basis. This second 
approach is more accurate but also more time-consuming. 

3 Numerical results 

In the following numerical results obtained by an improved CNDO method are 
presented. In the previous section we referred in general to the NDDO approxima- 
tion but the simplifications leading to CNDO or INDO approaches are straight- 
forward. Our emphasis is on shifts of the canonical MO energies in the improved 
method. To obtain the general trends it is sufficient if we restrict ourselves to the 
simple CNDO method using the ZDO parametrization of Ref. 51. Let us summar- 
ize the basic steps. First we calculate the matrix elements of the core Hamiltonian 
in the AO basis according to Eq. (23): 

h~ = ZD°huu, 

1 h~ = ZD°h~ + -~S.~(h~. + h . )  (~ ~ v). 
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Now we may proceed in two different ways as described in the previous section. We 
denote the alternatives as method A and B in the following. In method A the core 
Hamiltonian matrix is immediately subjected to the L6wdin transformation: 

~'h = S -  1/z h S -  x/2. 

Next, we transform the two-electron integrals to the L6wdin basis according to Eq. 
(79). Adopting the simplifications of the CNDO method, we obtain 

: S - 1 / 2 S + 1 / 2 [ , . g  ,g i ,~  ,,k ~ . S - 1 / 2 S + 1 / 2  

C ac D ).~ 

Note that we only require invariance of the two-electron integrals against rotation 
of the local coordinate axes, not, however, against hybridization. Thus, the two- 
electron integrals may still depend on the quantum number l of the angular 
momentum [50]. To fulfill the same invariance criterion in the L6wdin basis, 
an averaging procedure has to be employed (see Eq. (92)). If we do not require 
invariance against hybridization it is not necessary to average over the whole basis 
set of an atom but only over AOs with the same angular quantum number l. 
Denoting the AOs on centers A and B by their angular quantum numbers In and 
IB and additional indices ma and mB distinguishing AOs with the same angular 
quantum number l, Eq. (92) is replaced as follows: 

1 } ?  . . . .  = Xt, Xl, ). 
~Yl~t~ (21A + 1)(2l. + 1) (Zt. 2l a ] . . . .  

Now the elements of the two-electron matrix are obtained as in the usual CNDO 
procedure: 

z c = ~  , r - X p  :~ 
Gu~ ~'~ 2.. 1717 Yu17, 

17 

), ex 1 2D ,~. 

The Fock matrix ~'F = ~'h + ~'G may now be diagonalized by the well-known 
iteration procedure. 

In method B which corresponds to the approach suggested by Yonezawa et al. 
[6] the two-electron matrix G is calculated in the AO basis using the Mulliken 
approximation [24] for replacement of diatomic overlap densities in the two- 
electron integrals. If we require again only invariance against rotation of local 
coordinate axes Eq. (98) is replaced as follows: 

c 1 1 
Gu, = g s u v Z Z  P~.~,sa.~(y~,17 + 7,17) = g s u ~ E  N~17(yu, + y~,,), 

17 ). a 

ex ] 

Now the matrix F = h + G is formed and subjected to the LSwdin transformation: 

ZF = S -  t / 2 F S -  1/2  

The eigenvalue problem is again solved iteratively. 
Let us compare the MO energies obtained by the CNDO realization of 

Ref. 51 with those obtained by the improved methods A and B for some simple 
hydrocarbons. The examples considered are methane (CH4), acetylene (Call2), 
ethylene (C2H4) and ethane (C2H6) in staggered conformation. We have chosen 
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experimental° bond lengths which are lc_H = 1.094 ~, for CH4, lc-c = 1.205/~, 
/c_n= 1.059A for C2H2,o /c_c=1.339A, /c_H=1.086/~ for C/H4 and 
lc-c = 1.536 A, Ic_, = 1.091 A for C2H6. In addition, we performed minimal basis 
set ab initio calculations (STO-3G basis) [60] for these molecules using the same 
geometry data. Since the parametrization of Ref. 51 is designed to match the results 
of ab initio calculations a comparison is legitimate. For the simple molecules 
studied ab initio calculations with much better basis sets would not pose any 
difficulties. But as emphasized above it is the aim of the present work to analyze 
general trends in the modification of canonical MO energies when avoiding 
the ZDO approximation in model Hamiltonians. And for this general purpose the 
minimal basis set results are a suffÉcient reference. The numerical results for the 
canonical MO energies are given in Tables 1-4. The energies of the occupied MOs 
are also shown in Fig. 1. In the case of the ab initio results we give only the energy 
levels of the valence electrons. Comparing CNDO and STO-3G results it is easily 
seen that the general trends are the same for all of these molecules. The innermost 
MOs are always found at too low energies in the CNDO method. The energy levels 
of the HOMO and MOs just below are in general quite reasonable, whereas the 
virtual MOs of CNDO are much too low in energy. It is immediately seen that 
these systematic errors of CNDO energy levels in the inner valence region are 
corrected by applying the improved methods A and B. The shifts of the HOMO 
and the MOs just below the HOMO are relatively weak even if the energetic 
sequence of MOs with different symmetry is not always maintained. The energetic 
up-shift of the most low-lying MO is more pronounced, whereas all virtual MOs 

Tab le  1. C a n o n i c a l  M O  energ ies  o f  C H 4  o b t a i n e d  by  different  m e t h o d s  de- 

sc r ibed  in the  text. All energ ies  a re  given in eV. The  v i r tua l  levels are  m a r k e d  by  

a n  as te r i sk  

C N D O  A B S T O - 3 G  

a* 5.75 4 9 . 4 8  46.67 20.26 

t~ 6.26 22.04 21.44 19.30 

t2 - 14.83 - 13.99 - 12.90 - 14.05 

a l  - 29.64 - 22.03 - 20.98 - 24.66 

Tab le  2. C a n o n i c a l  M O  energies  of  C 2 H  2 o b t a i n e d  b y  different  m e t h o d s  

desc r ibed  in the  text.  All energ ies  a re  given in eV. The  v i r tua l  levels a re  m a r k e d  

by  a n  as te r i sk  

C N D O  A B S T O - 3 G  

cry- * 9.89 220.62 208.36 39.99 
~r~- * 5.17 36.05 35.16 20.00 

cry-* 3.11 23.73 24.76 15.13 
n~ 2.24 4.20 4.39 10.73 
7t. - 11.47 - -  10.22 - 10.57 - 9 . 4 7  

~ - -  15.75 - 15.08 - 13.89 - 16.57 

a ~  - 21.17 - 20.08 - 16.84 - 19.28 

a ~  - -  28.30 - 23.83 - 21.86 - 25.92 
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Tab le  3. C a n o n i c a l  M O  energ ies  o f  C 2 H 4  o b t a i n e d  b y  different  m e t h o d s  

desc r ibed  in the  text.  All energ ies  a r e  given in eV. The  v i r tua l  levels are  m a r k e d  

by  a n  as te r i sk  

39 

C N D O  A B S T O - 3 G  

b~u 9.12 96.70 90.22 26.53 

b*g 5.98 37.85 35.89 25.78 

b~u 4.07 29.43 29.08 18.74 

a* 5.25 33.02 31.62 18.35 

b*u 6.68 21.30 21.71 17.45 

b~g 1.07 2.45 2.20 8.66 

blu - 10.52 - 9.32 - 9.89 - 8.78 

bl~ - 12.59 - 14.74 - 12.24 - 12.66 

ag - 14.39 - 13.40 - 13.15 - 14.20 

b2u - 18.58 - 15.65 - 14.36 - 16.49 

b3u - 2 2 . 2 5  - 19.53 - 17.53 - 2 0 . 1 4  

ag - 32.20 - 23.60 - 22.52 - 26.58 

Tab le  4. C a n o n i c a l  M O  energ ies  of  C 2 H  6 o b t a i n e d  by  different  m e t h o d s  

desc r ibed  in the  text. All energ ies  are  g iven  in eV. The  v i r tua l  levels are  m a r k e d  

b y  a n  as te r i sk  

C N D O  A B S T O - 3 G  

e~ 5.42 24.54 23.58 21.38 

a*u 7.31 62.83 57.51 21.11 

a* B 5.78 43.70 40.93 19.54 
a*u 4.66 28.65 27.41 18.60 

e* 6.65 20.86 21.16 17.91 

e 8 - 12.80 - 14.27 - 12.30 - 12.50 

al~ - 12.96 - 11.57 - 11.81 - 12.63 

eu - 17.38 - 15.00 - 13.93 - 15.61 

a2 .  - 24.48 - 20.08 - 18.45 - 21.92 

a lg  - -34 .81  - 2 3 . 7 3  - 2 2 . 7 6  - 2 6 . 7 0  

except those with rt symmetry are strongly up-shifted. The energetic up-shifts of the 
occupied levels resulting from the improved MO methods are somewhat too strong 
but the general trend is reasonable. A more refined parametrization could lead to 
a better agreement with ab initio results whereas the deviations of the CNDO levels 
in the inner valence region and for the virtual MOs are a direct consequence of the 
ZDO approximation. A physically reliable parametrization is hardly possible in 
this case. 

If the up-shifts of the MO energies in the improved MO methods are somewhat 
too strong for the low-lying MOs they are completely unreasonable for the highest 
virtual MO, especially in the case of acetylene where the energy of this MO is 
pushed up to more than 200 eV. It is interesting to note that there is a relationship 
between the up-shift of the highest unoccupied MO in our method and the lowest 
eigenvalue of the overlap matrix, i.e., the lower the latter the higher the former. In 
the case of acetylene, the lowest eigenvalue of the overlap matrix is getting as small 
as 0.05. If it were exactly zero the AOs would be linearly dependent, the dimension 
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Fig. 1. Energies of the occupied canonical MOs for CH+ (a), C2H2 (b), C2H ¢ (c) and CzH 6 (d), see 
legends to Tables 1-4 

of the basis set thus being reduced by one. Consequently, one of the MOs would be 
redundant and this is probably just the one with the unreasonably high energy. If 
one eigenvalue of the overlap matrix were exactly zero it would be impossible to 
determine the energy eigenvalue of the redundant MO [54]. If the lowest eigen- 
value of the overlap matrix is not zero but rather small one might suspect that the 
energy eigenvalue of the "quasi-redundant" MO is particularly sensitive to defi- 
ciencies in the parametrization. We have seen above that the parametrization of 
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our methods A and B is still far from optimum because it exaggerates the up-shifts 
of the inner valence and virtual MOs although the general trend of the shifts is 
reasonable. 

The MO shifts shown in Fig. 1 and Tables 1-4 are mainly due to the difference 
between the core Hamiltonian matrices ~'h and ZD°h. The two-electron matrices ZG 
and ZD°G also differ but this difference is much less important as far as MO energies 
are concerned. To illustrate our point we present the matrices ~h and ZD°h for 
acetylene in Table 5. The molecular axis is oriented along the x direction so that the 
py and Pz orbitals of the two carbons have r~ symmetry. From Table 5 we recognize 
that the corresponding rc submatrices consist of matrix elements which are at least 
comparable in magnitude so that the equation ~'h ~ ZD°h holds approximately for 
the r~ submatrices even if the relatively short distance between the two carbons in 
acetylene leads to a large overlap integral of S = 0.46 between the rc orbitals. 
However, the matrix elements of the a submatrix differ strongly. The difference 
exceeding 2 a.u. (~  55 eV) in some cases can be seen from Table 5. Thus, it is quite 
remarkable that among the occupied MOs only the most bonding one experiences 
a considerable energy shift. In any case, it is impossible to base a justification of 
ZDO methods on the equation Xh ~ ZD°h in all-valence-electron methods. 

The electron charges on carbon and hydrogen in the series C2H2k with 
k = 1, 2, 3 for the different methods are presented in Table 6. It is interesting to note 
that the values of CNDO and method A are very close to each other in all cases, 
whereas the absolute magnitude of the charges is reduced in method B. The correct 
charge reorganization as a function of k, i.e., an increasing electron density on 
hydrogen with increasing k is observed for all methods. 

We already mentioned that penetration integrals should be included in the core 
Hamiltonian if the transition from the ZDO to AO parameters is made. This would 
also diminish the energeticup-shift of the MO energy levels which turned out to be 
too strong in our test calculations (Tables 1-4, Fig. 1). However, application of the 
empirical formula suggested for the inclusion of penetration effects in semiempir- 
ical MO methods [50, 51] did not result in significant down-shifts of the MO 
energy levels. In our calculations this shift never exceeded 0.5 eV. Numerical 
calculations of penetration integrals are known to give much larger effects [21] so 
that the empirical formula accounts only for a fraction of the penetration effect. 

4 Discussion and conclusions 

We have seen that a clearcut analysis of the ZDO approximation can only be given 
for ~ electron methods. This is due to the fact that in this case a function of the 
overlap matrix like, e.g., S-1/2 can be expanded in a rather rapidly converging 
power series. Thus, the different integrals and matrix elements in the L6wdin basis 
can be analyzed in terms of varying order of diatomic overlap densities of the AOs. 
Combination of such a power series expansion with the Mulliken approximation 
for the two-electron integrals shows that the notion "zero differential overlap" 
approximation is misleading because this technique is correct up to first order 
overlap densities of the AOs. It should be noted that the integrals and matrix 
elements of ZDO methods must be assumed to refer to a L6wdin basis for which 
the significance of the term "overlap density" is much less clear than for an AO 
basis where it can be interpreted as a density in the bond region between two 
atoms. We reemphasize that, in contrast to a widely accepted argument, there is no 
inconsistency in neglecting diatomic overlap densities (now referred to LiSwdin 
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Table 6. Changes on carbon and hydrogen atoms for C2H2~ (k = 1,2,3) obtained by 
different methods described in the text 
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CNDO A B STO-3G 

C2H2 qc -0.126 -0.126 -0.086 -0.109 
qn 0.126 0.126 0.086 0.109 

C2H4 qc -0.107 -0.117 -0.056 -0.125 
qn 0.054 0.058 0.028 0.063 

C2H6 qc --0.096 --0.093 --0.055 --0.171 
qn 0.032 0.031 0.018 0.057 

orbitals) in the two-electron integrals but retaining them in the resonance inte- 
grals. 

In the case of all-valence-electron methods a clear theoretical justification of the 
ZDO approximation is not evident because there is no guarantee that a power 
series expansion of S -  1/2 converges. In particular, the assumption ZD°F ~ ~F, i.e., 
identity of the ZDO Fock matrix with the Fock matrix obtained from the LiSwdin 
transformation completely breaks down. We have seen that this is mainly due to 
differences between the corresponding core Hamiltonian matrices. The fact that 
rather large overlap integrals can occur in all-valence-electron methods may also 
lead to approximate linear dependencies of the basis vectors indicated by eigen- 
values of the overlap matrix which are close to zero. We have seen in the previous 
section that a rather small eigenvalue of 0.05 has been obtained for acetylene. If the 
basis set is linearly dependent the eigenvalue equation (1) has no unique solution 
[54] and even sufficiently small eigenvalues of the overlap matrix might lead to 
numerical problems which can be resolved by reducing the dimension of the basis 
properly [54]. It is clear that the ZDO eigenvalue equation (7) is insensitive to such 
redundancies of the basis set because the overlap matrix does not appear explicitly 
in this equation. 

In our analysis the emphasis was on systematic errors in the canonical MO 
energy spectrum obtained by semiempirical MO methods as a result of the ZDO 
approximation. We have seen that the very low-lying occupied and the virtual 
MOs are systematically placed at too tow energies in ZDO-based schemes. It 
turned out that an improved method based on explicit performance of the LiSwdin 
transformation can be obtained by very simple manipulations of the ZDO para- 
meters. Of course, we cannot expect that our preliminary calculations based on the 
two-electron integrals of the CNDO method and completely neglecting penetra- 
tion effects can reproduce the results of ab initio calculations. But the general trend 
of our results which give an improved MO energy spectrum in the inner valence 
region is encouraging. For  further improvement it would be necessary to use the 
two-electron integrals of the N D D O  method which take into account the higher 
multipole moments of the charge distributions and thus also the dependence of the 
two-electron integrals on the spatial orientation of the orbitals involved. In combi- 
nation with the inclusion of penetration integrals and perhaps also the effects 
of core-valence separation [53] such an approach which has been outlined in 
Sect. 2 should lead to improved results. The use of N D D O  integrals would also dis- 
pense with the need to account for differences between a - a  and r~-n interactions by 
rather artificial manipulations of the resonance integrals. 
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One may wonder how other molecular properties are affected if we follow the 
procedure described in this paper. At the present stage we are not able to answer 
this question systematically. In our test calculations for some simple hydrocarbons 
we have seen that the charge densities obtained by method A are quite close to 
those of the CNDO version of Ref. 51 and that the correct trend is obtained in the 
series C2Hzk (k = 1, 2, 3). It is highly likely that changes of various molecular 
properties are in general much less systematic than those of MO energies and more 
sensitive to the choice of parameters. We have seen in our simple analysis of the 
Hiickel method (Eqs. (50)-(55)) that the eigenvectors and thus the charge densities 
are the same for both ZD°h and ~h because both matrices commute with the overlap 
matrix S, whereas the eigenvalues, i.e., the MO energies, differ in a systematic 
manner. From this example one might suspect that the quality of the ZDO 
approximation has something to do with the difference between the eigenvectors of 
the Fock matrix F and those of the overlap matrix S. If we assume that the 
Hamiltonian matrix and the overlap matrix commute which is of course in general 
unrealistic except for the simple Hfickel model just mentioned another interesting 
consequence arises. It can be verified that in this case the bond order matrix (96) is 
exactly identical to the L6wdin bond order matrix (81). Since the diagonal elements 
of Eq. (96) represent the gross populations introduced by Mulliken [44], the 
L6wdin and the Mulliken population analysis give then the same results. However, 
the diagonal elements of the LiSwdin bond order matrix and thus the correspond- 
ing orbital populations are necessarily positive. The Mulliken population analysis, 
on the other hand, can result in negative orbital populations, a phenomenon 
closely related to counterintuitive orbital mixing [61]. Thus, if negative orbital 
populations are obtained by the Mulliken analysis the Fock matrix and the overlap 
matrix cannot commute and one might suspect that the difference between the 
eigenvectors of the two matrices is particularly large in this case. It would be 
subject of a separate investigation to examine how this influences the charge 
distributions obtained by ZDO-based methods but it seems rather likely that ZDO 
results are particularly unreliable for systems where the Mulliken population 
analysis gives negative orbital populations. 

We already mentioned that semiempirical MO methods are getting out of 
fashion because modern computers enable ab initio calculations for larger and 
larger molecules. But there will always be systems large enough to be tractable only 
by semiempirical methods (e.g. crystalline solids). We would also like to emphasize 
that semiempirical MO techniques are superior to ab initio methods in the 
evaluation of electronic transition energies. Thus, improvements of these formal- 
isms should always be welcome. The first CNDO and INDO versions developed by 
Pople and coworkers tried to mimic the results of minimal basis set ab initio 
calculations [1]. Later a completely different school of thought (initiated by the 
group around M.J.S. Dewar) dominated the development of semiempirical 
methods [2]. It is based on the idea to have a simple formalism the accuracy of 
which is continuously upgraded by a more and more refined parametrization 
designed to fit some experimentally observed quantities as closely as possible. It 
has often been criticized that the disposable parameters in such an approach are 
void of physical meaning because they are fitted to experimental results and that 
the accuracy of the results does not tell us anything about the quality of the 
underlying model even if such a method has some predictive power. Thus, in 
contrast to ab initio methods which can be improved systematically on the 
Hartree-Fock level by extending the basis set, there seems to be no systematic and 
rigorous way to improve parameter-based methods. But why should it not be 
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possible to improve the underlying formalism of a semiempirical approach and 
then find a new parametrization which should be able to reproduce certain 
molecular properties for a broader range of molecules? E.g., if the failure of 
MINDO/3 to reproduce the heats of formation of small strained hydrocarbon 
rings is a consequence of the ZDO approximation as has been argued by de Bruijn 
[14], an improved method not employing the ZDO approximation should be able 
to reproduce the heats of formation of strained and unstrained hydrocarbons 
equally well with the same parameter set if it is chosen properly. In other words, 
there might be systematic errors in the results of semiempirical methods which can 
be ascribed to approximations in the underlying formalism. By focussing on the 
ZDO approximation we tried to show how one of the most drastic approximations 
commonly used in semiempirical methods could be overcome. More work remains 
to be done if such an effort should finally result in an improved semiempirical 
method. 
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